
Behavior Research Methods, Instruments, & Computers
1987, 19 (4), 397-399

Cautions regarding random number generation
on the Apple II

JAMES W. ALDRIDGE
Pan American University, Edinburg, Texas

Undocumented characteristics of the pseudorandom number generators in Applesoft BASIC
and Apple Pascal are described that cause identical sequences to be generated on different exe
cutions of programs written in those languages. Although it is relatively easy for this problem
to escape notice, in both cases the problem is easily corrected once its existence is known.

The purpose of this paper is to call attention to un
documented characteristicsof the pseudorandom number
generators provided with Applesoft BASIC and Apple
Pascal. It is relativelyeasy to inadvertently use the gener
ators in such a way that identical sequences are gener
ated on different executions of an experiment-controlling
program, introducing spurious effects into the data. It is
also relatively easy for this to occur without being no
ticed by the experimenter.

Pseudorandomnumber generators in general require a
"seed," a numberon whichto basea pseudorandom num
ber sequence. In the Apple II seriesof computers, a poten
tial seed is available in memory locations $4E and $4F
hexadecimal (78 and 79 decimal). The monitor routine
KEYIN reads the keyboard by continuously looping un
til a key is pressed, witheach loop incrementing the value
in $4E. Each time the value in this location rolls through
$FF back to 0, $4F is incremented. This results in the
values in $4E and $4F representing a number between
oand $FFFF (0 and 65535). Since the entire process
counts to $FFFF and starts again at 0 in less than a sec
ond, the value at any instant is quite arbitrary as long as
there has beensomekeyboardinput. There willhave been
somekeyboard inputin any situation exceptwhenone uses
a "turnkey" program, which automatically runs as soon
as the machine is powered on.

The keyboard input need not be required by a particu
lar program. As soon as the power-on routines have
finishedoperating, the monitor routinebeginswaitingfor
input and incrementing the number, which will be un
affected by subsequent loadingof individual programs or
of many high-level languages. Thus, if a program even
requires a keyboard command to be executed, the value
in $4E and $4F constitutesa seed suitable for most appli
cations. Problems arise in the manner in which higher
level languages use (or do not use) the seed.

Preparation of thispaperwassupported bygrantsBNS-7919801 from
the National Science Foundation and S06RR08038from the National
Institute of Mental Health/MBRS. Reprints may be obtained from
James W. Aldridge, Psychology Department, Pan American Univer
sity, Edinburg, TX 78539.

APPLESOFf BASIC

The language built into all Apple II series computers
since the Apple 11+ is ApplesoftBASIC, which provides
the function RND for generating pseudorandom se
quences. RND takesan argumentn, and returns a pseudo
random number greater than or equal to 0, but less than
1. This valuemay be converted into an integer withinany
range from 0 tox-I by multiplyingit by x and rounding
down.

The behavior of RND is governed by the value of the
argument n. If n is negative, it acts as a seed so that a
pseudorandom sequence is begun that will be restarted
whenever RND is again used with that particular nega
tive argument. Ifn=O, the most recently generated num
ber is returned.Thesefeatures can be convenient in debug
ging and for saving storage space by saving a seed rather
than an entire sequence. The problemarises whenthe pro
grammer intendsto generatenewpseudorandom numbers
using a positive argument.

The Applesoft reference manual (Apple Computer,
1981)cites only the following about using positive argu
ments with the RND function: "If aexpr is greater than
zero, RND(aexpr) generates a new random number each
time it is used" (p. 102), and "Every time RND is used
with any positive argument, a new random number from
oto 1 is generated, unless it is part of a sequence of ran
dom numbersinitiatedby a negative argument" (p. 159).
A reasonable assumption is that RND with a positive ar
gument generates a value based upon the value in loca
tions $4E and $4F discussed above. This is not the case.

Applesoft in fact makes no use of the $4E-$4F value.
What actually happens is that RND with any positive ar
gument or series of positive arguments generates exactly
the same sequenceeach time the machine is powered on.
This is not easily noticed, however, since the sequence
is begun only when the machine is activated. The func
tion thus appears to be generating a new sequence every
time a program is rerun, even if the machine has been
rebooted. It is only when a machine is powered off and
back on that the sequencebegins repeatingitself. Further
more, since the values generated by RND normally will

397 Copyright 1987 Psychonomic Society, Inc.

398 ALDRIDGE

be transformed differently by each user program, the repe
tition at power-on will usually be noticed only if the same
program is used immediately after each power-on.

The potentially unfortunate consequences of this un
documented "feature" are illustrated by the following
study. In a memory experiment, each subject was sup
posed to have been presented an individually randomized
list of words. After testing a large number of subjects,
the research assistant gathering the data happened to no
tice that one particular ordering of the list seemed to be
reappearing with some frequency. This had not been no
ticed earlier because presentation of the lists and response
scoring were done by the computer, and the problem could
have easily escaped notice.

We discovered that the subjects receiving the repeated
lists were those tested at the beginning of each day, im
mediately after the computer had been turned on. An Ap
ple representative was contacted about the problem, and
we were advised to insert a statement of the form X =RND
(-1 *(PEEK(78) +256*PEEK(79))) after keyboard input
but before the first use of RND in the original program.

This statement converts the $4E-$4F value to a nega
tive integer, and then uses it as a negative argument for
RND. This begins a new random number sequence, which
is different for each value in $4E-$4F. It is necessary to
insert the statement only once in a program, after keyboard
input but before the first use of RND. As long as there
has been keyboard input of any kind between power-on
and the occurrence of the statement, this solution is ac
ceptable for most applications in experimental psychol
ogy. There are, however, other limitations to RND (Modi
anos, Scott, & Cornwell, 1987) that are of concern in the
development of simulations or other applications requir
ing relatively long series of nonrepeating pseudorandom
numbers.

APPLE PASCAL

There also exists an undocumented problem with ran
dom number generation in Apple Pascal. The problem
arises from a different source than that discussed above,
but has a similar consequence. Apple Pascal is a variant
of UCSD Pascal, which provides the capability for run
ning very large programs with the use of "overlaying. ' ,
Large programs may be divided into segments, with each
segment resident in memory only while it is actually in
use. In addition, routines used by many programs may
be stored in libraries in the form of units that are read
into memory as necessary.

Apple provides two pseudorandom number routines in
the unit APPLESTUFF. One of these routines, the func
tion RANDOM, returns a pseudorandom number between
o and 32767. The other routine, the procedure RAN
DOMIZE, functions in a manner similar to that of the Ap
plesoft RND solution discussed above. RANDOMIZE
seeds RANDOM with a time-dependent value determined
by input and output, and in most cases avoids the problems
produced by Applesoft's RND.

The problem with Pascal's routine occurs only in one
specific situation and may therefore be easily overlooked.
The manner in which units and segments are loaded and
swapped may be controlled by commands to the compiler
that are embedded in a program's source text. Under de
fault conditions, certain types of units (intrinsic units) are
loaded into memory as soon as the calling program is ex
ecuted, and remain in memory for the duration of the call
ing program. If, however, the compiler NOLOAD op
tion is used, intrinsic units are loaded into memory only
at the time they are called and are kept in memory only
as long as they are active. This option allows for extremely
efficient use of available memory, but at the cost of exe
cution speed. With NOLOAD in effect, every use of a
function or procedure in an intrinsic unit requires reload
ing of the unit from the system disk.

The pseudorandom number problem in Apple Pascal
results from the incorporation of RANDOMIZE in
APPLESTUFF, which is an intrinsic unit. There appears
to be no problem unless NOLOAD is in effect-one use
of RANDOMIZE properly seeds a sequence used by all
subsequent calls to RANDOM. If, however, NOLOAD
is in effect, the effect of RANDOMIZE is negated and
RANDOM will always return the same sequence of
values.

The problem appears to result from the swapping of
the unit caused by NOLOAD. Consider the following
procedure:

BEGIN RANDOMIZE; WRITE(RANDOM) END;

With NOLOAD this sequence always writes the same
value, whereas without NOLOAD the value will be differ
ent at each execution. This presumably results from the
fact that when NOLOAD is in effect, the statement RAN
DOMIZE causes the loading of APPLESTUFF, the exe
cution of RANDOMIZE, and the release of APPLE
STUFF from memory. The release of APPLESTUFF also
apparently releases the variable containing the seed value
created by RANDOMIZE. The call to RANDOM then
causes a new loading of APPLESTUFF, as though it had
never been previously loaded, and RANDOM generates
a value as though the previous RANDOMIZE had never
been executed.

Once the problem is noticed, the solution is relatively
simple. Another compiler option, RESIDENT, prevents
the automatic swapping of segments or the swapping of
intrinsic units that would otherwise be caused by
NOLOAD. The effect of RESIDENT is restricted to the
procedure that contains the option and to units and seg
ments specified in the .option. Thus, the statement

BEGIN {$R APPLESTUFF} RANDOMIZE;
WRITE(RANDOM) END;

functions properly even with NOLOAD in effect. The
RESIDENT specification ($R) prevents the swapping out
of APPLESTUFF between the calls to RANDOMIZE and
to RANDOM, without affecting the action of NOLOAD
on portions of the program outside of the procedure. Since

the option is specific to APPLESTUFF, it alsowould not
affect the action of NOLOAD on any other unit calls
addedto the procedure. Further information is available
in the language reference manual provided with Apple
Pascal (Apple Computer, 1980), and Wichmann and Hill
(1987) reported their own Pascal random number func
tion that produces very long nonrepeating sequences.

It should be stressed that the above problems are not
merely interesting quirks that will rarelybeencountered
in actual programming situations. The nature of the
problems is such that they can have disastrous conse
quences for the integrity of one's data, but can easilyes
cape notice. It was only by chance that my assistant no
ticed the problem with Applesoft in the aboveexample,
dueto therestricted condition underwhich it occurs. With
Pascal, it is often the case that a program will be com
pletedand tested, andat a later timesomechangein con
ditions requires addition of the NOLOAD option. A pro-

APPLE RANDOM NUMBERS 399

gram might not beextensively retestedafter so minor a
change,andan experimenter mayfail to notice thatnum
ber sequences were no longer beingproperlygenerated.
It is even reasonable to suspect that data already in the
literature havebeencontaminated by these undocumented
problems.

REFERENCES

ApPLE COMPUTER, INC. (1980). Apple II ApplePascallanguage refer
ence manual. Cupertino, CA: Author.

ApPLE COMPUTER, INC. (1981). Applesoft II BASICprogramming refer
ence manual. Cupertino, CA: Author.

MODIANOS, D. T., SCOTT, R. C., & CORNWELL, L. W. (1987). Test
ing intrinsic random-number generators. Byte, 12, 175-178.

WICHMANN, 8., & HILL, D. (1987). Building a random-number gener
ator. Byte, 12, 127-128.

(Manuscript received March 19, 1987;
revision accepted for publication May 8, 1987.)

